Journal of Organometallic Chemistry, 368 (1989) 277–286 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09833

Organotitanium chemistry

XI *. Synthesis of some new chiral cyclopentadienyl-titanium and -zirconium complexes and crystal structures of $[R-CH_3OCH_2CH(CH_3)Cp]_2MCl_2$ (M = Ti, Zr)

Qichen Huang and Yanlong Qian **

Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai (China)

and Youqi Tang

Institute of Physical Chemistry, Peking University, Beijing (China) (Received May 2nd, 1988; in revised form September 1st, 1988)

Abstract

Twelve new chiral cyclopentadienyl-titanium or -zirconium complexes Cp'_2TiCl_2 , $Cp'CpTiCl_2$ and Cp'_2ZrCl_2 , $(Cp = \eta^5$ -cyclopentadienyl and $Cp' = CH_3OCH(R')$ CH(R'')Cp), have been synthesized. Complex (R, R)-1 and (R, R)-3 have been studied by X-ray analysis. The complex (R, R)-1 forms violet-red plate crystals, which are triclinic, space group P1, with a 6.775(3), b 6.792(4), c 35.517(22) Å, a 89.94(5), β 90.05(4), γ 119.98(4)°, V 1415(1) Å³, Z = 3. The structure was refined to an R factor of 0.039 for 3142 observed reflections. The complex (R, R)-1, a 6.8295(6), b 6.8301(6), c 35.940(2) Å, a 89.990(7), β 90.011(7), γ 119.997(6)°, V 1541.9(2) Å³. The final R factor is 0.065 for 2608 observed reflections.

Introduction

Asymmetric synthesis benefits greatly from the preparation of new chiral reagents or new chiral catalysts. Cyclopentadienyl (Cp) is a very common type of ligand in organometallic chemistry. It is found in many catalyst precursors such as Cp_2TiCl_2 , Cp_2V and Cp_2Ni . The Cp ligand is also frequently encountered in complexes undergoing stoichiometric reaction, such as Cp_2ZrClH or Cp_2MoH_2 . The synthesis of new chiral cyclopentadienes and their complexes is therefore of

^{*} For part X see ref. 13.

^{**} Author to whom correspondence should be addressed.

interest. However, the synthesis of chiral cyclopentadienes is still limited to a few examples, such as CpCH(CH₃)Ph [1], menthylcyclopentadienyl [2], neomenthylcyclopentadienyl [2] and other chiral cyclopentadienyl [3–10] ligands. These ligands have in common large chiral substituents on a cyclopentadienyl ring. We describe below the synthesis and crystal structure of a new family of chiral cyclopentadienyltitanium complexes, which have chiral side chains containing an ethereal oxygen atom.

Experimental

All experiments were carried out under argon with standard techniques. Solvents were distilled under argon from sodium before use. ¹H NMR spectra were obtained using a EM-360 NMR Spectrometer. ¹³C NMR spectra were recorded on a Varian XL-200 Spectrometer. IR srectra were obtained using a Shimadzu IR-440 Spectrometer. The MS spectrum was measured on a Finnigan 4021 Mass Spectrometer. Specific rotation was measured on a Perkin–Elmer 241 MC Polarimeter. Melting points were not corrected.

All titanium complexes are red, while the zirconium complexes are colorless. The typical procedure, using (R, R)-1 as an example, is described below:

A solution of 18.9 g (0.137 mol) of R-CH₃OCH₂CH(CH₃)CpH in 100 ml THF was added to a suspension of 5.36 g of potassium sand and 100 ml of THF with stirring under argon. Stirring was continued for 2 h. After 0.7 g of unreacted potassium was removed, 202 ml of an approximately 0.589 *M* THF solution of Cp'K was obtained.

A solution of 1.92 ml (3.32 g) of TiCl₄ in 18 ml dry benzene was added in a Schlenk flask. Then 60 ml of the Cp'K solution was added at 0°C, and the mixture was stirred for an additional 2 h. The solvent was removed under vacuum, and the solid residue was extracted with ether. The extracts were concentrated, cooled to -78° C, and filtered to give a red solid product, (*R*, *R*)-1, 4.2 g, yield 61%.

The complexes prepared are listed in Table 1. The zirconium complexes were prepared similarly.

Crystal data and experiment parameters

The crystals of both complexes (R, R)-1 and (R, R)-3 were obtained by recrystallization from benzene under an argon atmosphere. The diffraction intensities of crystal (R, R)-1 were measured on a Syntex P3/R3 four-circle diffractometer, using Mo- K_{α} radiation with a graphite monochromator, λ 0.71069 Å. The crystal of (R, R)-3 was measured on a Rigaku AFC-5R diffractometer using a Cu- K_{α} (Ni filter), 1.54178 Å. The crystal data and other experimental parameters are listed in Table 2. Both crystals are isomorphous, and their crystal dimensions suggest that they belong to a trigonal or hexagonal system. However their diffraction intensities did not have symmetry higher than triclinic.

The intensities were corrected for Lorentz and polarization effects but not for absorption effects.

Structure solution, refinement and absolute configuration

For (R, R)-1, three titanium atoms and six chlorine atoms were found by the direct method using the SHLEXTL 3.0 program system, and the remaining non-hydrogen atoms were found on a Fourier map. After refinement with anisotropic

(%) (°C) (Found (calcd) (%)) (IMS, CUCl ₃) (CUCl ₃ , 0 7/10) (m / 2) max (cm - 2) (m bank (cm - 2)) (S,S)+1 61 136-137 55.45 6.97 12.21 12.4d, 1.58 14.53, 121.28, 119.91 357(M ⁺ - Cl) 3150m, 806s, +1173° (5.5.) (S,S)+1 (34.98 6.66 12.18) 3.35, 3.45d, 116.07 116.59 255, 219 88m, 1000m, 800s, +137° (S,S)+1 (54.98 6.66 15.26 1.4420, 1353, 3.45d, 117.27, 115.62, 119.77 255, 219 88m, 1000m, 840s, +53°(1) (S,S)+2 6.30 6.33 1.24d, 1.58m, 137.64, 138.1, 13.27, 110.62, 115.77 255, 219 86m, 1050m, 840s, +53°(1) (S,S)+3 6.50 6.33 1.22d, 1.58m, 117.27, 115.62, 119.77 255, 219 860m, 1050m, 840s, +32°(1) (S,S)+3 6.50 3.35s, 3.45d, 117.27, 115.62, 119.77 255, 219 860m, 1050m, 840s, +32°(1) (S,S)+3 6.30 6.33 1.1227, 110.98, 716.6 330, 746, 158.81, 34.89 10000s (S,S)+4 5 127-128 54.63 1.1327, 110.98, 716.6 356, 104.80,	Product	Yield	m.p.	Element	al analys	iis	¹ H NMR	¹³ C NMR	MS	IR (KCI)	$[\alpha]_{D}(c, t^{\circ}C)$
C H Ti 0 (ppm) 0 (pp) 0 (pp) 0 (pp)		(%)	(C)	(Found ((calcd.) (((%	(TMS, CDCl ₃)	(CDCI ₃ , § 77.10)	(<i>m</i> /z)	ν _{max} (cm ⁻²	(in denzene)
(\mathbf{k}, \mathbf{R}) 61 $136 - 137$ 55.45 697 1221 1244 $\mathbf{158m}$ 141.53 1357 55.219 $\mathbf{880m}$ 6066 $\mathbf{1100s}$ (\mathbf{s}, \mathbf{s}) $\mathbf{540d}$ 5881 , 3454 116.59 12244 1236 1244 $\mathbf{128m}$ 1246 $\mathbf{128m}$ 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 $\mathbf{1390m}$ 4905 1373 1373 1373 1373 1373 $\mathbf{1300m}$ $\mathbf{800m}$ $\mathbf{1300m}$ 4905 $\mathbf{1300m}$ 4905 $\mathbf{1300m}$ 4905 $\mathbf{1300m}$ $1300m$				0	Н	Ti	ð (ppm)	δ (ppm)			
(5,5)1 (54,98 6.66 12.18) 3.35, 3.45d, 16.54 116.59, 114.89, 77.69, 25, 219 880m, 1080m, 1080m, 1060s (8,7,2)2 98 134-135 5.279 6.05 15.26 1.244, 1.8m, 17.27, 115.62, 119.77 255, 219, 800m, 1050m, 1030m, 8406, 10248 (5,5)4 550 1244, 1.58m, 113.27, 110.98, 78.16, 399(M ⁺ - Cl), 3100m, 8408, 432°(l $434.6, 556, 12, 1096, 255, 1096, 255, 2196, 255, 2196, 255, 2109, 255, 1000m, 1090s (8, R), 4 1277, 115, 12, 21, 21, 20, 115, 22, 219 800m, 1050m, 1050m, 1050m, 1046, 766, 56, 113, 113.27, 110, 927 337, 314, 01, 124.26, 115, 22, 2196, 255, 1000m, 255, 1000m, 255, 1000m, 256, 256, 256, 255, 257, 2196, 255, 2196, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 255, 2106, 226, 256, 2106, 226, 256, 217, 275, 297, 261 (8, R), 6 10, 227 1134, 55, 114, 92, 119, 71, 255, 219, 255, 219, 255, 1060m, 255, 2106, 225, 219, 255, 2106, 255, 2106, 225, 219, 255, 2106, 2000m, 233, 260, 12, 27 55, 219, 255, 219, 255, 2106, 200, 226, 2106, 205, 255, 2106, 200, 226, 2306, 205, 256, 217, 275, 2106, 200, 2306, 227, 260, 110, 208, 400, 1207 (5,$	(R,R)-1	61	136-137	55.45	6.97	12.21	1.24d, 1.58m,	141.53, 121.28, 119.91,	$357(M^+ - Cl),$	3150m, 860s,	+173° (0.10, 24)
(R).2 98 134-135 52.79 6.00 58.81, 34.89, 16.54 1100ss 440s, 54s 17.27, 115.62, 119.77 235, 219, 860m, 1050m, 860m, 1050m, 1037, 115.62, 119.77 235, 219, 860m, 1050m, 840s, $+32^{\circ}(1, 13.74, 1100, 87, 16, 390, 15.28, 133, 148, 1090s +53^{\circ}(1, 15, 25, 219, 860m, 1050m, 840s, 1037, 113, 251, 1038, 78.16, 399(M^+ - Cl), 860s, 1048s +32^{\circ}(1, 13.27, 1038, 78.16, 399(M^+ - Cl), 860s, 1048s, 630d, 113.27, 1108, 78.16, 399(M^+ - Cl), 860s, 1048s +32^{\circ}(1, 13.74, 110, 2.78d, 113.77, 110, 87, 816, 399(M^+ - Cl), 860s, 1048s +32^{\circ}(1, 13.74, 110, 2.78d, 113.77, 110, 87, 816, 399(M^+ - Cl), 860s, 1048s +32^{\circ}(1, 13.74, 110, 124.26, 115.62, 55.12, 255, 219, 855, 1060m, 810s, 8.75, 310, 1090s +53^{\circ}(1, 124, 26, 115.62, 55.12, 255, 219, 855, 1060m, 810s, 816, 395, 1060m, 810s, 8.75, 310, 237, 315, 333, 335, 335, 335, 335, 335, 335$	(S,S)-1			(54.98	6.66	12.18)	3.35s, 3.45d,	116.59, 114.89, 77.69,	255, 219	880m, 1080m,	
(R)-2 98 134-135 52.79 6.05 15.26 1.24d, 1.58m, 142.06, 121.52, 120.30, 285(M^+ -Cl), 31008, 840s, +53°(1) (S)-2 (S)-2 (S) 3.55, 3.45d, 117.27, 115.62, 119.77 255, 219, 860m, 1050m, 453°(1) (R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 117.27, 115.62, 119.77 255, 219, 860m, 1050m, 453°(1) (R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 117.27, 116.20, 115.28, 434(M^+), 3100m, 840s, +32°(1) (S, S)-3 6.30 5.335, 3.45d, 113.27, 110.98, 78.16, 3100m, 840s, +32°(1) (S, S)-4 55 124d, 1.58m, 113.27, 110.98, 78.16, 3100m, 840s, +32°(1) (S, S)-4 55 124 1.104, 2.78d, 132.61, 124.26, 115.62, 357.01 860s, 1048s (S, S)-4 5.30 5.43, 3.48m, 114.69, 76.62, 56.12, 255.219 8555, 1060m, (S, P) 5.55 5.219 555.219 555.219 8555							6.40d	58.81, 34.89, 16.54		1100ss	
(5)-2 (52.37 5.65 14.92) 3.35s, 3.45d, 117.27, 115.62, 119.77 255, 219, 860m, 1050m, (R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 137.43, 116.20, 115.28, 434(M^+), 3100m, 840ss, +32°((R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 137.43, 116.20, 115.28, 434(M^+), 3100m, 840ss, +32°((S, S)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 113.27, 110.98, 78.16, 399(M^+ - Cl), 860s, 1048s (S, S)-3 65 127-128 54.46 12.44 1.10d, 2.78d, 134.01, 124.26, 115.62, 357(M^+ - Cl), 3100m, 840s, (S, S)-4 55 127-128 54.66 12.18) 3.305, 34.8m, 114.69, 76.62, 56.12, 255, 219 855, 1060m, (R, R, P, e) 55.2 58 56.2 59.0 15.03 1.10d, 2.78d, 134.01, 124.26, 115.62, 255.219 855, 1060m, (S, S) + 55.2 58 56.2, 519 855, 1060m, 855, 1060m, (S, S) + 55.3 56.2 56.2, 519 855	(<i>R</i>)-2	98	134-135	52.79	6.05	15.26	1.24d, 1.58m,	142.06, 121.52, 120.30,	$285(M^+ - CI),$	3100s, 840ss,	+ 53° (0.10, 22.5)
(R,R) -3 $(5 \ 104 - 105 \ 50.03 \ 6.33 \ 1.24d, 1.58m, 137.43, 116.20, 115.28, 434(M+), 3100m, 840s, +32°(1) (R,R)-3 (5 \ 104 - 105 \ 50.03 \ 6.33 \ 6.00 \ 3.35s, 3.45d, 113.27, 110.98, 78.16, 399(M+ - Cl), 860s, 1048s 6.30d 58.76, 34.26, 16.83 297, 261 1090ss 6.30d 58.76, 34.26, 16.83 297, 261 1090ss 6.37d 37.53, 19.27 \ 110.66, 27.26 \ 12.18) 3.30s, 3.48m, 114.69, 76.62, 56.12, 255, 219 855s, 1060m, 840s, 6.37d 37.53, 19.27 \ 1100s 6.37d 37.53, 19.27 \ 1100s \ 6.37d 37.53, 19.27 \ 1100s \ 855s, 1060m, 840s, 6.37d 37.53, 19.27 \ 1100s \ 855s, 1060m, 840s, 6.39d, 6.50s 76.62, 56.17, 37.58, 18.3, 10.86 \ 1100s \ 865m, 1050s \ 865m, 1050s \ 865m, 1050s \ 865m, 1050s \ 1100s \ 865m, 1050m, 840s, \ 100s \ 865m, 1050s \ 100s \ 865m, 1050m, 840s, \ 100s \ 865m, 1050m, 840s, \ 100s \ 865m, 1050m, 865m, 1050m, 840s, \ 100s \ 865m, 1050m, 840s, \ 100s \ 865m, 1050m, 840m, 840m, \ 100s \ 865m, 1050m, 840m, 840m, \ 100s \ 865m, 1050s \ 100s \ $	(S)-2			(52.37	5.65	14.92)	3.35s, 3.45d,	117.27, 115.62, 119.77	255, 219,	860m, 1050m,	
16.59 16.59 (R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 137.43, 116.20, 115.28, 434(M^+), 3100m, 840s, +32°(1 (S, S)-3 6.30 5.35, 3.45d, 3.35, 3.45d, 113.27, 110.98, 78.16, 399($M^+ - C$]), 860s, 1048s 580s, 1048s (S, S)-4 55 127-128 5.4.6 13.27, 110.98, 78.16, 399($M^+ - C$]), 860s, 1048s 49.53 (S, S)-4 55 127-128 5.4.63 6.73 12.44 1.10d, 2.78d, 13.401, 124.26, 115.62, 357($M^+ - C$]), 3100m, 840s 47.3 (R, R)-4 (54.98 6.66 12.18) 3.30s, 3.48m, 114.69, 76.62, 56.12, 255, 219 855s, 1060m, 840s (R, R)-4 (5.5)-5 5.90 15.03 1.10d, 2.78d, 134.75, 124.99, 124.30, 285($M^+ - C$]), 3100s, 840s, (R).5 (R, R)-6 (8.5) 3.30s, 3.48m, 115.66, 56.17, 37.58, 183.71, 255, 219 855m, 1050m, 865m, 1050m, 865m, 1050m, 865m, 1050m, 865m, 1050m, 865m, 1050m, 840s, 1260, 127, 107.58, 219, 1000, 840s, 1000s (S, S)-6 10 84-86 14.923 5.30s, 3.48m, 115.662, 56.17, 37.58, 183.71, 255, 219, 855m, 1050m, 865m, 1050m, 865m, 1050m, 840s, 1050m, 840m, 1050s (S, S)-6 10 84-86 14.923 5.30s, 3.48m, 115.961, 18.30, 183.91, 183.01, 255, 219, 855m, 1050m, 865m, 1050s (S, S)-6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.44d, 6.54s</td> <td>77.64, 58.81, 34.89,</td> <td>183, 148</td> <td>1090ss</td> <td></td>							6.44d, 6.54s	77.64, 58.81, 34.89,	183, 148	1090ss	
(R, R)-3 65 104-105 50.03 6.33 1.24d, 1.58m, 137,43, 116.20, 115.28, $434(M^+)$, 3100m, 840s, $+32^\circ(1)$ (S, S)-3 (49.53 6.00) 3.35s, 3.45d, 113.27, 110.98, 78.16, 399(M^+ - Cl), 860s, 1048s $+32^\circ(1)$ (S, S)-4 55 127-128 5.463 6.73 12.44 11.0d, 2.78d, 134.01, 124.26, 115.62, 357(M^+ - Cl), 860s, 1048s $+32^\circ(1)$ (S, S)-4 55 127-128 5.463 6.73 12.44 11.0d, 2.78d, 134.01, 124.26, 115.62, 357(M^+ - Cl), 3100m, 810s, (R, R)-4 (54.98 6.66 12.18) 3.30s, 3.48m, 114.69, 76.62, 56.12, 255, 219 855, 1060m, (S, S)-5 52 88-90 52.69 5.90 15.03 110d, 2.78d, 134.75, 124.99, 124.30, 255, 3106m, $405, 605, 615, 735, 735, 735, 735, 735, 735, 735, 73$								16.59			
(S,S) -3 $(49.53 \ 6.00)$ $3.35s$ $3.45d$ $113.27, 110.98, 78.16,$ $399(M^+ - Cl)$ $860s, 1048s$ (S,S) -455 $127-128$ 54.63 6.73 12.44 $1.10d, 2.78d,$ $134.01, 124.26, 115.62,$ $357(M^+ - Cl),$ $3100m, 810s,$ (R,R) -4 (S,S) -4 (S,S) -4 $1.10d, 2.78d,$ $134.01, 124.26, 115.62,$ $357(M^+ - Cl),$ $3100m, 810s,$ (R,R) -4 (S,S) -4 (S,S) -3 $3.30s, 3.48m,$ $114.69, 76.62, 56.12,$ $357(M^+ - Cl),$ $3100m, 810s,$ (S) -5 $S2$ $S9$ $(S-2)3$ $1.10d, 2.78d,$ $134.75, 124.99, 124.30,$ $855s, 1060m,$ (R) -5 $S2$ $S9$ $(S-2)3$ $S.10s, 3.48m,$ $115.96, 114.93, 119.71,$ $255, 219,$ $865m, 1050m,$ (R) -5 $(S-3)7$ $S6.53, 3.48m,$ $115.66, 56.17, 37.58,$ $1300s, 840s,$ $1100s$ (R,R) -6 10 $84-86$ 49.20 6.04 $1.10d, 2.78d,$ $130.65, 118.99, 119.71,$ $255, 219,$ $865m, 1050m,$ (S,S) -6 10 $84-86$ 49.20 6.04 $1.10d, 2.78d,$ $130.65, 118.99, 118.30,$ $399(M^+ - Cl),$ $310m, 840m,$ (R,R) -6 (P,S) 6.00 $3.30s, 3.48m,$ $112.69, 112.10, 77.25,$ $297, 261$ $860m, 1045s,$ (R,R) -6 (P,S) 6.00 $3.30s, 3.48m,$ $112.69, 112.10, 77.25,$ $297, 261$ $860m, 1045s,$	(R, R)-3	65	104-105	50.03	6.33		1.24d, 1.58m,	137.43, 116.20, 115.28,	434(<i>M</i> ⁺),	3100m, 840ss,	+ 32°(0.90, 25)
(S,S),4 55 127-128 54.63 6.73 12.44 110d, 2.78d, 134.01, 124.26, 115.62, 357($M^+ - C$], 3100m, 810s, (R,R),4 (54.98 6.66 12.18) 3.30s, 3.48m, 114.69, 76.62, 56.12, 255, 219 855s, 1060m, (R,R),4 (5.9-5 5.90 15.03 1.10d, 2.78d, 134.01, 124.26, 115.62, 357($M^+ - C$]), 3100m, 810s, (S)-5 52 88-90 52.69 5.90 15.03 1.10d, 2.78d, 134.75, 124.99, 124.30, 285($M^+ - C$]), 3100s, 840s, (R)-5 (S)-5 5.53 1.00d, 2.78d, 13.475, 124.99, 124.30, 285($M^+ - C$]), 3100s, 840s, (R)-5 (S)-5 1.10d, 2.78d, 13.475, 124.99, 119.71, 255, 219, 865m, 1050m, (R)-5 (S)-5 3.30s, 3.48m, 115.96, 114.93, 119.71, 255, 219, 865m, 1050m, (R,R)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.30, 399($M^+ - C$]), 3100m, 840m, (S,S)-6 10 84-86 49.20 6.00 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 10	(S.S)-3			(49.53	6.00)		3.35s, 3.45d,	113.27, 110.98, 78.16,	$399(M^+ - CI),$	860s, 1048s	
(S,S) -455127-12854.636.7312.441.10d, 2.78d,134.01, 124.26, 115.62,357($M^+ - C$),3100m, 810s, (R,R) -4(54.986.6612.18)3.30s, 3.48m,114.69, 76.62, 56.12,255, 219855s, 1060m, (S) -55288-9052.695.9015.031.10d, 2.78d,134.75, 124.99, 124.30,285($M^+ - C$),3100s, 840s, (R) -55288-9052.695.9015.031.10d, 2.78d,134.75, 124.99, 124.30,285($M^+ - C$),3100s, 840s, (R) -5(S)-5511.10d, 2.78d,134.75, 124.99, 124.30,285($M^+ - C$),3100s, 840s, (R) -5(S)-55.9015.031.10d, 2.78d,134.75, 124.93, 119.71,255, 219,865m, 1050m, (R) -5(S)-5(S)-5(S)-56.17, 37.58,183, 1481100s100s (R,R) -61084-8649.206.041.10d, 2.78d,130.65, 118.59, 118.30,399($M^+ - C$),3100m, 840m, (R,R) -61084-8649.236.00)3.30s, 3.48m,112.69, 112.10, 77.25,297, 261860m, 1045s, (R,R) -66.28d56.32, 36.94, 19.271100556.32, 36.94, 19.2711005	~			,			6.30d	58.76, 34.26, 16.83	297, 261	1090ss	
(R, R) (54.98 6.66 12.18 3.30s, 3.48m, 114.69, 76.62, 56.12, 255, 219 855s, 1060m, 1100s (S) -5 52 88-90 5.20 15.03 1.10d, 2.78d, 134.75, 124.99, 124.30, 285(M^+ - Cl), 3100s, 840s, 115.96, 114.93, 119.71, 255, 219, 855m, 1050m, 6.39d, 6.50s 76.62, 56.17, 37.58, 183, 148 1100s (R) -5 10 84-86 49.20 6.39d, 6.50s 76.62, 56.17, 37.58, 183, 148 1100s (S,S) -6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399(M^+ - Cl), 3100m, 840m, 100s (S,S) -6 10 84-86 49.20 6.00 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, 6.00, 6.04 (R,R) -6 $(49.53$ 6.00 $3.36.94, 19.27$ $1100s$ $2.07, 261$ $860m, 1045s, 6.00, 6.04$	(S,S)-4	55	127-128	54.63	6.73	12.44	1.10d, 2.78d,	134.01, 124.26, 115.62,	$357(M^+ - CI),$	3100m, 810s,	
(S)-5 52 88-90 5.269 5.90 15.03 1.10d, 2.78d, 134.75, 124.90, 124.30, 285($M^+ - Cl$), 3100s, 840s, (R)-5 (S2.37 5.65 14.92) 3.30s, 3.48m, 115.96, 114.93, 119.71, 255, 219, 865m, 1050m, (R)-5 (S2.37 5.65 14.92) 3.30s, 3.48m, 115.96, 114.93, 119.71, 255, 219, 865m, 1050m, (R,F)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399($M^+ - Cl$), 3100m, 840m, (S,S)-6 10 84-86 49.20 6.00 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, (R,R,P)-6 (49.53 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, (S,R,R)-6 6.28d 56.32, 36.94, 19.27 1100s 1100s	(R,R)-4			(54.98	6.66	12.18)	3.30s, 3.48m,	114.69, 76.62, 56.12,	255, 219	855s, 1060m,	
(S)-5 52 88-90 52.69 5.90 15.03 1.10d, 2.78d, 134.75, 124.99, 124.30, 285(M^+ - Cl), 3100s, 840s, (R)-5 (S)-5 (52.37) 5.65 14.92) 3.30s, 3.48m, 115.96, 114.93, 119.71, 255, 219, 865m, 1050m, (R)-5 (S)-5 (S) 76.62, 56.17, 37.58, 183, 148 1100s (S,S)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399(M^+ - Cl), 3100m, 840m, (S,S)-6 10 84-86 49.20 6.00 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, (R,R)-6 (49.53) 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s,							6.37d	37.53, 19.27		1100s	
(R)-5 (52.37 5.65 14.92 3.30s, 3.48m, 115.96, 114.93, 119.71, 255, 219, 865m, 1050m, (S,S)-6 10 84-86 49.20 6.39d, 6.50s 76.62, 56.17, 37.58, 183, 148 1100s (S,S)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399($M^+ - CI$), 3100m, 840m, (R,R)-6 (49.53 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, (R,R)-6 6.28d 56.32, 36.94, 19.27 1100s 1100s	(<i>S</i>)-5	52	88-90	52.69	5.90	15.03	1.10d, 2.78d,	134.75, 124.99, 124.30,	$285(M^+ - CI),$	3100s, 840s,	
(S,S)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399($M^+ - CI$), 3100m, 840m, (R,R)-6 (49.53 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, 6.28d 56.32, 36.94, 19.27 11005 5.28d 56.32, 36.94, 19.27 11005	(R)-5			(52.37	5.65	14.92)	3.30s, 3.48m,	115.96, 114.93, 119.71,	255, 219,	865m, 1050m,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							6.39d, 6.50s	76.62, 56.17, 37.58,	183, 148	1100s	
(S,S)-6 10 84-86 49.20 6.04 1.10d, 2.78d, 130.65, 118.59, 118.30, 399(M^+ - Cl), 3100m, 840m, (R,R)-6 (49.53 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, (R,R)-6 6.28d 56.32, 36.94, 19.27 1100s								19.27			
(<i>R</i>,<i>R</i>)-6 (49.53 6.00) 3.30s, 3.48m, 112.69, 112.10, 77.25, 297, 261 860m, 1045s, 6.28d 56.32, 36.94, 19.27 1100s	(S,S)-6	10	8486	49.20	6.0 1		1.10d, 2.78d,	130.65, 118.59, 118.30,	$399(M^+ - CI),$	3100m, 840m,	
6.28d 56.32, 36.94, 19.27 1100s	(R,R)-6			(49.53	6.00)		3.30s, 3.48m,	112.69, 112.10, 77.25,	297, 261	860m, 1045s,	
	• • •						6.28d	56.32, 36.94, 19.27		1100s	

Chiral cyclopentadienyl complexes prepared

Table 1

279

Table 2	
Crystal data	
Compound	(<i>R</i> , <i>R</i>)-1
Formula weight	C ₁₈ H ₂₆ O ₂ Cl ₂ Ti/393.2
Colour and habit	red/plates
Crystal system	triclinic
Space group	P 1
a (Å)	6.775(3)
b (Å)	6.792(4)
c (Å)	35.52(2)
α(°)	89.94(5)
0 (0)	00.05(0)

Formula weight	C ₁₈ H ₂₆ O ₂ Cl ₂ Ti/393.2	$C_{18}H_{26}O_2Cl_2Zr/436.5$	_
Colour and habit	red/plates	colourless/plates	
Crystal system	triclinic	triclinic	
Space group	P 1	P1	
a (Å)	6.775(3)	6.8295(6)	
b (Å)	6.792(4)	6.8301(6)	
c (Å)	35.52(2)	35.940(2)	
α (°)	89.94(5)	89.990(7)	
β(°)	90.05(4)	90.011(7)	
γ (°)	119.98(4)	119.997(6)	
$V(Å^3)$	1415(1)	1541.9(2)	
Z	3	3	
$Dc (g cm^{-3})$	1.38	1.50	
μ (cm ⁻¹)	7.6 (Mo- K_{α})	75.3 (Cu- K_{α})	
F (000)	618	672	
Scan method	$\theta - 2\theta$	$\omega - 2\theta$	
Max. 2θ (°)	45	100	
Crystal size (mm)	$0.06 \times 0.5 \times 0.5$	$0.15 \times 0.3 \times 0.35$	
Scan rate (° min ⁻¹)	6-30	128	
No. of observed	3142	2608	
reflections	$I > 1.96\sigma(I)$	$I > 3.0\sigma(I)$	
R	0.039	0.065	
Rw	0.037	0.063	
	$w = 1/\sigma^2(F) + 0.00025F)$	$w = 1/(\sigma^2(F) + 0.00025F)$	
GOF	1.772	2.682	

(R, R)-3

temperature factors by full-matrix-block least-squares, a difference map was calculated, most hydrogen atoms were located, and the others were placed at calculated positions (C-H 0.96 Å). Further refinement converged at R = 0.039.

The structure of complex (R, R)-3 was directly refined using the coordination of (R, R)-1, only with zirconium atoms instead of titanium atoms. Its absolute config-

Table 3

Selected bond lengths and angles for crystal (R, R)-1

Bond lengths (Å)					
Ti(1)-Cl(1)	2.378(2)	Ti(2)-Cl(3)	2.366(2)	Ti(3)-Cl(5)	2.372(2)
Ti(1)Cl(2)	2.375(1)	Ti(2)-Cl(4)	2.379(2)	Ti(3)-Cl(6)	2.373(3)
Ti(1)C(101)	2.464(8)	Ti(2) - C(201)	2.450(8)	Ti(3)-C(301)	2.435(8)
Ti(1)C(102)	2.407(9)	Ti(2)-C(202)	2.410(8)	Ti(3)-C(302)	2.408(7)
Ti(1)-C(103)	2.348(8)	Ti(2)-C(203)	2.344(8)	Ti(3)-C(303)	2.342(8)
Ti(1)-C(104)	2.339(12)	Ti(2) - C(204)	2.354(7)	Ti(3)-C(304)	2.339(10)
Ti(1)-C(105)	2,387(10)	Ti(2) - C(205)	2,389(9)	Ti(3)-C(305)	2.395(9)
C(101)-C(102)	1.379(10)	C(201)–C(202)	1.406(13)	C(301)-C(302)	1.408(9)
C(102)-C(103)	1.384(15)	C(202)-C(203)	1.399(10)	C(302)-C(303)	1.400(14)
C(103)-C(104)	1.395(12)	C(203)-C(204)	1.403(15)	C(303)-C(304)	1.387(13)
C(104)-C(105)	1.382(14)	C(204)-C(205)	1.383(10)	C(304)-C(305)	1.394(11)
C(105)-C(101)	1.432(15)	C(205)-C(201)	1.432(12)	C(305)-C(301)	1.427(15)
C(101)-C(106)	1.501(15)	C(201)-C(206)	1.509(10)	C(301)-C(306)	1.517(15)
C(106)-C(107)	1.532(15)	C(206)–C(207)	1.541(19)	C(306)-C(307)	1.486(15)
C(106)-C(108)	1.525(19)	C(206)-C(208)	1.493(18)	C(306)-C(308)	1.476(19)
C(108)-O(1)	1.354(15)	C(208)–O(3)	1.379(14)	C(308)-O(5)	1.389(14)
O(1)-C(109)	1.448(14)	O(3)-C(209)	1.440(21)	O(5)-C(309)	1.430(16)
Ti(1)-C(111)	2.459(8)	Ti(2)-C(211)	2.451(8)	Ti(3)-C(311)	2.444(8)
Ti(1) - C(112)	2.413(8)	Ti(2)-C(212)	2.414(9)	Ti(3)-C(312)	2.396(7)
Ti(1)-C(113)	2.351(10)	Ti(2)-C(213)	2.351(8)'	Ti(3)–C(313)	2.327(8)
Ti(1)-C(114)	2.362(8)	Ti(2)-C(214)	2.348(7)	Ti(3)-C(314)	2.351(10)
Ti(1)-C(115)	2.416(8)	Ti(2)-C(215)	2.412(9)	Ti(3)-C(315)	2.398(9)
C(111)-C(112)	1.425(13)	C(211)-C(212)	1.392(13)	C(311)-C(312)	1.411(9)
C(112)-C(113)	1.392(12)	C(212)-C(213)	1.413(10)	C(312)-C(313)	1.405(15)
C(113)-C(114)	1.398(10)	C(213)-C(214)	1.404(15)	(313)–C(314)	1.381(12)
C(114)-C(115)	1.399(15	C(214)-C(215)	1.382(10)	C(314)-C(315)	1.405(12)
C(115)-C(111)	1.408(9)	C(215)–C(211)	1.429(13)	C(315)-C(311)	1.423(15)
C(111)-C(116)	1.507(15)	C(211)-C(216)	1.519(11)	C(11)-C(316)	1.525(15)
C(116)-C(117)	1.503(15)	C(216)–C(217)	1.491(19)	C(316)-C(317)	1. 497(17)
C(116)-C(118)	1.526(14)	C(216)-C(218)	1.500(18)	C(316)-C(318)	1.481(14)
C(118)-O(2)	1.371(16)	C(218)-O(4)	1.379(12)	C(318)-O(6)	1.408(15)
O(2)-C(119)	1.447(13)	O(4)-C(219)	1.447(19)	O(6)-C(319)	1.436(13)
$Ti(1)-Cp(1)^{a}$	2.074	Ti(2)-Cp(3)	2.064	Ti(3)-Cp(5)	2.058
Ti(1)-Cp(2)	2.078	Ti(2)-Cp(4)	2.069	Ti(3)-Cp(6)	2.059
Bond angles (°)					
Cl(1)-Ti(1)-Cl(2)		92.9(1)	Cp(1)-Ti(1)-Cp	(2)	133.2
C(101)-C(106)-C)	107)	111.0(1)	C(101)-C(106)-	C(108)	112.7(7)
C(107)-C(106)-C(108)	111.8(9)	C(106)-C)108)-	O(1)	109.1(13)
C(108)-O(1)-C(10	19)	109.0(11)	C(111)-C(116)-	C(117)	112.4(8)
C(111)-C(116)-C(118)	111.9(10)	C(117)-C(116)-	C(118)	112.9(9)
C(116)-C(118)-O((2)	109.4(8)	C(118)-O(2)-C	(119)	112.8(8)
Cl(3) - Ti(20 - Cl(4))		92.7(1)	Cp(3)-Ti(2)-Cp	(4)	133.1
C(201)-C(206)-C(207)	111.0(8)	C(201)-C(206)-	C(208)	114.0(9)
C(207)-C(206)-C(208)	112.8(9)	C(206)-C(208)-	O(3)	109.0(9)
C(208) - O(3) - C(20)	19)	111.2(10)	C(211)-C(216)-	C(217)	111.9(9)
C(211)-C(216)-C(218)	111.6(9)	C(217)-C(216)-	C(218)	113.5(9)
C(216)-C(218)-O((4)	109.6(9)	C(218)-O(4)-C	(219)	112.3(9)
Cl(5)-Ti(3)-Cl(6)		92.6(1)	Cp(5)–Ti(3)–Cp	(6)	132.8
C(301)-C(306)-C(307)	114.0(12)	C(301)-C(306)-	C(308)	112.1(7)
C(307)-C(306)-C(308)	113.5(9)	C(306)-C(308)-	O(5)	109.8(12)
C(308)-C(5)-C(30	(9)	112.8(11)	C(311)-C(316)-	C(317)	111.9(8)
(311)-C(316)-C(318)	113.3(11)	C(317)-C(316)-	C(318)	113.6(9)
(316)-((318)-O(0)	109.0(7)	C(318)-O(6)-C((319)	111.3(8)

 $\overline{}^{a}$ Cp is the centre of the cyclopentadienyl ring.

Bond lengths (Å)					· · ·
Zr(1)-Cl(1)	2.448(7)	Zr(2)-Cl(3)	2.440(7)	Zr(3) - Cl(5)	2.459(4)
Zr(1)-Cl(2)	2.470(5)	Zr(2)-Cl(4)	2.473(6)	Zr(3)-Cl(6)	2.464(8)
Zr(1)-C(101)	2.570(18)	Zr(2)C(201)	2.539(19)	Zr(3) - C(301)	2.501(17)
Zr(1)-C(102)	2.490(22)	Zr(2)-C(202)	2.517(20)	Zr(3) - C(302)	2.470(18)
Zr(1)-C(103)	2.460(22)	Zr(2)-C(203)	2.478(23)	Zr(3) - C(303)	2.478(19)
Zr(1) - C(104)	2.463(25)	Zr(2)-C(204)	2.477(20)	Zr(3)-C(304)	2.466(27)
Zr(1)-C(105)	2.457(53)	Zr(2)-C(205)	2.462(22)	Zr(3)-C(305)	2.533(21)
Zr(1)-C(111)	2.545(17)	Zr(2)-C(211)	2.527(22)	Zr(3) - C(311)	2.525(22)
Zr(1)-C(112)	2.497(21)	Zr(2) - C(212)	2.527(23)	Zr(3)-C(312)	2.482(21)
Zr(1)-C(113)	2.427(24)	Zr(2)-C(213)	2.475(20)	Zr(3) - C(313)	2.486(22)
Zr(1)-C(114)	2.472(23)	Zr(2)-C(214)	2.474(20)	Zr(3)-C(314)	2.500(29)
Zr(1)-C(115)	2.476(19)	Zr(2)-C(215)	2.468(22)	Zr(3)-C(315)	2.494(22)
$Zr(1)-Cp(1)^{a}$	2.196	Zr(2)-Cp(3)	2.200	Zr(3)-Cp(5)	2.19 0
Zr(1)-Cp(2)	2.180	Zr(2)-Cp(4)	2.214	Zr(3)-Cp(6)	2.198
Bond angles (°)					
Cl(1) - Zr(1) - Cl(2)	94.2(2)	Cp(1)-Zr(1)-Cp(2)	133.7		
Cl(30-Zr(2)-Cl(4))	95.1(2)	Cp(3) - Zr(2) - Cp(4)	131.5		
Cl(5)-Zr(3)-Cl96)	94.2(2)	Cp(50-Zr(3)-Cp(6)	130.1		

Selected bond lengths and angles for crystal (R, R)-3

" Cp is the centre of the cyclopentadienyl ring.

uration was determined by Hope's method [11] using the anomalous scattering of zirconium atom for Cu- K_{α} radiation, with the (R, R)-structure coordinations and $\Delta f'' = -2.245$, 0, -2.245, respectively. After 12 cycles of least-squares refinement, the R factors converged to 0.0645, 0.0668, 0.0726, respectively, indicating unambiguously (R, R)-configuration.

The molecular structures of complexes (R, R)-1 and (R, R)-3 are shown in Fig. 1. Atomic coordinates and temperature factors are listed in Table 5 and 6, respectively. Hydrogen atomic coordinates, isotropic temperature factors and structure factors of both complexes are available from the authors. Selected bond lengths and angles for complexes R, R-1 and R, R-3 are listed in Tables 3 and 4.

Results and discussion

The synthetic route is outlined as follows:

Table 4

Atom coordinates (×10⁴) and temperature factors (×10³) for crystal (R, R)-1. (U_{eq}) is defined as 1/3 of the trace of the orthogonalised U tensor)

Atom	x	у	2	U _{eq}	
Ti(1)	0	0	0	30(1)	
Cl(1)	- 959(3)	2923(3)	-9(1)	45(1)	
Cl(2)	- 3880(3)	- 2930(3)	9(1)	44(1)	
O(1)	- 725(12)	2168(11)	-1377(2)	89(4)	
O(2)	- 2908(13)	-2192(14)	1374(3)	92(5)	
C(101)	-453(13)	- 126(12)	-690(2)	44(4)	
C(102)	1063(15)	1807(15)	- 594(3)	49(5)	
C(103)	3066(12)	1217(12)	- 420(2)	50(4)	
C(104)	1942(16)	-1152(15)	- 407(3)	50(5)	
C(105)	- 196(16)	- 1991(15)	- 565(3)	51(5)	
C(106)	-2537(16)	-276(17)	- 866(3)	75(6)	
C(107)	- 3743(19)	-2364(19)	- 1122(4)	117(7)	
C(108)	-2032(21)	1900(24)	-1071(3)	108(9)	
C(109)	-136(22)	4302(18)	- 1558(4)	124(8)	
C(111	- 318(13)	139(12)	688(2)	44(4)	
C(112)	-230(14)	-1851(12)	592(2)	49(4)	
C(113)	1862(13)	- 1197(13)	423(2)	53(4)	
C(114)	3112(13)	1177(13)	416(3)	54(4)	
C(115)	1779(14)	2003(13)	575(2)	54(4)	
C(116)	- 2208(16)	358(16)	870(3)	73(6)	
C(117)	- 1324(23)	2412(17)	1119(3)	114(9)	
C(118)	- 3923(17)	-1832(22)	1068(3)	99(7)	
C(119)	- 4392(22)	-4310(16)	1565(4)	123(8)	
Ti(2)	2551(2)	- 3728(2)	- 3332(1)	30(1)	
Cl(3)	6420(3)	- 2777(3)	- 3341(1)	43(1)	
Cl(4)	3505(3)	152(3)	- 3323(1)	45(1)	
O(3)	3274(15)	- 819(14)	- 1961(3)	90(5)	
O(4)	5420(12)	-3018(11)	-4703(2)	94(4)	
C(201)	3020(13)	- 3391(11)	- 2647(2)	42(4)	
C(202)	949(13)	- 3499(12)	-2739(2)	48(4)	
C(203)	-511(14)	- 5577(13)	- 2913(2)	54(4)	
C(204)	627(13)	-6826(11)	- 2919(2)	53(4)	
C(205)	2780(13)	- 5512(12)	-2767(2)	51(4)	
C(206)	5095(15)	-1452(15)	-2465(3)	74(5)	
C(207)	6335(18)	-2341(21)	- 2214(4)	116(8)	
C(208)	4635(23)	218(17)	- 2268(3)	101(7)	
C(209)	2688(23)	691(22)	- 1771(4)	120(9)	
C(211)	2870(13)	- 3258(12)	- 4018(2)	47(4)	
C(212)	778(13)	- 3521(12)	- 3909(2)	51(4)	
C(213)	- 577(14)	- 5669(13)	- 3740(2)	52(4)	
C(214)	710(15)	-6769(11)	- 3756(2)	54(4)	
C(215)	2787(13)	- 5343(12)	- 3923(2)	49(4)	
C(216)	4768(17)	-1141(15)	- 4204(3)	70(5)	
C(217)	3860(23)	-1(16)	- 4451(3)	120(8)	
C(218)	6445(18)	-1627(16)	- 4398(3)	99(6)	
C(219)	6936(21)	- 3602(18)	- 4897(4)	124(8)	
Ti(3)	6268(2)	3720(2)	- 6667(1)	30(1)	
Cl(5)	3353(3)	-151(3)	-6674(1)	44(1)	
Cl(6)	9197(3)	2770(3)	- 665 8(1)	44(1)	
O(5)	8462(12)	3035(12)	- 5294(2)	92(4)	
O(6)	4082(12)	833(10)	- 8040(2)	93(4)	
C(301)	6140(14)	3261(12)	- 5985(2)	45(4)	

Atom	x	у	Z	U _{eq}	
C(302)	8111(14)	5326(12)	- 6075(2)	47(4)	
C(303)	7452(15)	6765(11)	- 6247(2)	52(4)	
C(304)	5091(15)	5652(12)	-6262(2)	49(4)	
C(305)	4257(14)	3510(13)	-6100(2)	53(4)	
C(306)	5956(20)	1176(15)	- 5795(3)	70(6)	
C(307)	3913(20)	- 64(16)	- 5551(3)	110(7)	
C(308)	8101(22)	1670(17)	- 5607(3)	95(8)	
C(309)	10548(20)	3631(18)	- 5104(4)	127(8)	
C(311)	6435(14)	3410(12)	-7350(2)	43(4)	
C(312)	8279(13)	5516(12)	- 7234(2)	46(4)	
C(313)	7436(15)	6823(12)	-7066(2)	49(4)	
C(314)	5088(14)	5594(12)	- 7089(2)	51(4)	
C(315)	4428(14)	3477(13)	-7256(2)	50(4)	
C(316)	6582(18)	1463(14)	-7536(3)	72(6)	
C(317)	8646(20)	2309(21)	- 7781(4)	120(9)	
C(318)	4441(23)	-203(16)	- 7724(3)	96(8)	
C(319)	1962(20)	- 674(21)	- 8223(4)	129(8)	

Table 5 (continued)

The chiral cyclopentadienes are prepared as described in ref. 12. The properties of the chiral cyclopentadienyl complexes are listed in Table 1. The titanium and zirconium atoms in both complexes are surrounded by two cyclopentadienyl rings and two chlorine atoms. The ethereal oxygen atom in the side chain does not coordinate to the metal atom. It is very similar to those in $(CH_3OCH_2CH_2Cp)_2TiCl_2$ [13]. However, it is likely that in the catalytic intermediate $[Cp'_{2}TiH]$, which is formed in situ from Cp'₂TiCl₂ and i-C₁H₇MgBr [14], the ethereal oxygen atom of the side chain on the cyclopentadienyl ring could coordinate to the titanium atom to form a chelate ring. Because the titanium atom in low-valent species can accept the coordination of an ethereal oxygen atom [15,16], or a PMe₃ ligand [17], if the geometry of the ligand allows itself to form a chelate ring, we believe that the formation of a chelate ring in the catalytic intermediate [Cp₂TiH] is possible. In the complexes $CH_3OCH_2CH_2CpTiCl_3$ and $(cyclo-C_4H_7OCH_2Cp)TiCl_3$, the structural evidence for Ti-O coordination has been obtained [13]. Such a ring will bring the chiral atom near to the reaction center of the catalyst molecule, and probably leading to higher enantiomeric excesses. Asymmetric catalysis studies using such complexes as catalysts are currently in progress.

Table 6

Atom coordinates (×10⁴) and temperature factors (×10³) for crystal (R, R)-3. (U_{eq} is defined as 1/3 of the trace of the orthogonalised U tensor)

Atom	<i>x</i>	У	Z	U _{eq}
Zr(1)	0	0	0	28(1)
Cl(1)	- 917(11)	3036(8)	-6(2)	50(3)
Cl(2)	- 3994(10)	- 3054(9)	6(2)	49(3)
O(1)	-611(37)	2123(32)	-1386(6)	104(13)
O (2)	- 2864(42)	-2184(33)	1378(6)	113(15)
C(101)	- 376(28)	-76(33)	- 712(5)	39(11)
C(102)	1638(35)	1808(32)	- 610(6)	50(13)
C(103)	3102(34)	1189(31)	- 451(6)	55(12)
C(104)	1966(34)	-1211(34)	- 437(6)	51(13)
C(105)	-161(31)	- 1951(31)	- 583(6)	50(11)
C(106)	-2399(42)	-164(55)	~ 892(7)	100(24)
C(107)	- 3845(46)	- 2179(53)	-1141(10)	145(22)
C(108)	- 1855(69)	1993(60)	-1083(9)	138(33)
C(109)	-105(77)	4344(54)	-1571(11)	162(30)
C(111)	-223(33)	138(33)	706(5)	61(14)
C(112)	- 121(36)	-1801(31)	611(6)	45(12)
C(113)	1916(33)	-1183(32)	437(5)	46(12)
C(114)	3196(36)	1210(32)	437(7)	53(12)
C(115)	1814(37)	1968(31)	587(6)	52(13)
C(116)	~ 2150(34)	234(32)	881(5)	76(17)
C(117)	- 1514(67)	2189(48)	1137(9)	156(32)
C(118)	- 3854(53)	-1851(50)	1078(10)	137(28)
C(119)	- 4490(72)	- 4309(50)	1565(11)	154(28)
Zr(2)	2816(3)	- 3598(3)	- 3333(1)	29(1)
Cl(3)	6758(10)	- 2676(9)	- 3342(2)	49(3)
C1(4)	3685(10)	378(8)	- 3326(2)	45(3)
0(3)	3443(36)	- 820(36)	-1949(6)	93(13)
O(4)	5663(43)	-2911(38)	-4711(6)	106(16)
C(201)	3062(30)	- 3338(33)	- 2629(5)	44(12)
C(202)	1132(34)	- 3467(32)	- 2718(5)	51(12)
C(203)	- 376(42)	- 5530(37)	-2892(6)	61(15)
C(204)	804(38)	-6734(35)	- 2885(6)	55(14)
C(205)	2911(34)	- 5411(33)	-2747(6)	49(12)
C(206)	5111(38)	-1397(37)	-245(6)	101(18)
C(207)	6337(47)	- 2270(47)	- 2210(8)	123(21)
C(208)	4563(64)	192(42)	- 2244(7)	177(28)
C(209)	2948(65)	927(22)	- 1813(11)	162(29)
C(211)	2951(33)	- 3249(29)	-4034(6)	56(13)
C(212)	951(36)	- 3553(31)	- 3938(6)	59(13)
C(213)	- 390(37)	- 5617(34)	- 3769(5)	50(12)
C(214)	864(38)	- 6733(33)	- 3783(6)	42(12)
C(215)	2876(45)	- 5280(33)	- 3938(6)	52(15)
C(216)	4912(35)	-1218(32)	- 4227(5)	86(16)
C(217)	4086(58)	45(58)	4458(10)	147(27)
C(218)	6545(38)	- 1733(46)	- 4413(7)	109(18)
C(219)	7187(61)	- 3495(59)	4895(10)	133(26)
Zr(3)	5403(4)	3598(3)	- 6667(1)	29(1)
Cl(5)	3368(9)	- 379(8)	- 6674(2)	44(3)
Cl(6)	9436(9)	2682(9)	- 6658(2)	46(3)
O(5)	8673(39)	2974(33)	- 5293(6)	107(14)
O(6)	4205(37)	798(34)	- 8031(6)	100(13)
C(301)	6073(33)	3222(26)	- 5975(5)	51(11)
C(302)	8140(34)	5286(30)	-6062(5)	48 (11)

Atom	x	y	Z	U _{eq}
C(303)	7544(33)	6721(29)	-6215(5)	41(11)
C(304)	5207(38)	5600(33)	-6234(7)	61(14)
C(305)	4359(33)	3505(30)	-6074(5)	48(11)
C(306)	6043(36)	1194(35)	- 5784(6)	75(17)
C(307)	4024(51)	-146(48)	- 5534(8)	111(22)
C(308)	8188(46)	1639(47)	- 5597(8)	119(26)
C(309)	10813(52)	3583(57)	-5138(12)	159(24)
C(311)	6353(35)	3382(31)	-7369(6)	53(13)
C(312)	8324(38)	5457(33)	- 7257(6)	55(13)
C(313)	7575(40)	6782(36)	-7118(8)	136(29)
C(314)	5196(58)	5563(33)	-7115(7)	76(15)
C(315)	4544(37)	3467(33)	-7271(6)	58(12)
C(316)	6507(35)	1442(32)	-7538(6)	90(19)
C(317)	8436(49)	2064(57)	- 7788(8)	136(29)
C(318)	4496(58)	-216(44)	-7752(9)	152(30)
C(319)	1974(55)	- 777(51)	- 8209(10)	138(23)

Table 6 (continued)

Acknowledgements

Financial assistance from the National Natural Science Foundation of China and Academia Sinica is gratefully acknowledged.

References

- 1 J.C. Leblanc, C. Moise, J. Organomet. Chem., 120 (1976) 65; C. Moise, J.C. Leblanc, J. Tirouflet, J. Am. Chem. Soc., 97 (1975) 6272.
- 2 E. Cesarotti, H.B. Kagan, J. Organomet. Chem., 162 (1978) 297.
- 3 J.C. Fiand, J.L. Malleron, Tetrahedron Lett., 21 (1980) 4437.
- 4 R.L. Halterman, K.P.C. Vollhardt, M.E. Welker, D. Bläser, R. Boese, J. Am. Chem. Soc., 109 (1987) 8105.
- 5 R.L. Halterman, K.P.C. Vollhardt, Tetrahedron Lett., 27 (1986) 1461, and ref. therein.
- 6 L.A. Paquette, J.A. McKinney, M.L. McLaughlin, A.L. Rheingold, Tetrahedron Lett., 27 (1986) 5599, and ref. therein.
- 7 J.C. Gallucci, B. Gautheron, M. Gugelchuk, P. Meunier, L.A. Paquette, Organometallics, 6 (1987) 15.
- 8 L.A. Paquette, S.J. Hathaway, P.F.T. Schirch, J.C. Gallucci, Organometallics, 5 (1986) 500.
- 9 L.A. Paquette, P.F.T. Schirch, S.J. Hathaway, L.-Y. Hsu, J.C. Gallucci, Organometallics, 5 (1986) 490.
- 10 L.A. Paquette, in J.D. Morrison (Ed.), Asymmetric Synthesis, Academic Press, New York, 1984, Vol. 3, p. 455.
- 11 H. Hope, U.D. Camp, Acta Cryst., A, 28 (1972) 201.
- 12 Qichen Huang, Yanlong Qian, Synthesis, (1987) 910.
- 13 Qichen Huang, Yanlong Qian, Youqi Tang, J. Organomet. Chem., in press.
- 14 Yanlong Qian, Junming Zhuang, Jiaqi, Lü, Qichen Huang, Weihua Xu, J. Mol. Catal., 38 (1986) 331.
- 15 D.G. Sekutowski, G.D. Stucky, Inorg. Chem., 14 (1975) 2192.
- 16 G.P.J. Pez, J. Am. Chem. Soc., 98 (1976) 8072.
- 17 L.B. Kool, M.D. Rausch, H.G. Alt, M. Herberhold, B. Wolf and U. Thewalt, J. Organomet. Chem., 297 (1985) 159.